Exam Graph Theory

23 January 2023, 15.00-17.00

- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids.
- Always make sure to state clearly any results from the lecture notes you are using.
- Write the answer to each question on a separate sheet, with your name and student number on each sheet. This is worth 10 points (out of a total of 100).

Exercise 1 (20 pts).

Determine the result of the Gale-Shapley algorithm on the following situation:

boys	girls
$b_{1}: g_{1}>g_{2}>g_{4}>g_{3}$	$g_{1}: b_{4}>b_{1}>b_{2}>b_{3}$
$b_{2}: g_{2}>g_{1}>g_{3}>g_{4}$	$g_{2}: b_{3}>b_{4}>b_{2}>b_{1}$
$b_{3}: g_{3}>g_{2}>g_{4}>g_{1}$	$g_{3}: b_{2}>b_{4}>b_{3}>b_{1}$
$b_{4}: g_{3}>g_{1}>g_{4}>g_{2}$	$g_{4}: b_{3}>b_{1}>b_{4}>b_{2}$

Make sure to clearly indicate, for each step of the algorithm, what actions are taken by the algorithm.

Exercise 2 (20 pts)

Apply Kruskal's algorithm to find a minimum spanning tree in the following edge-weighted graph.

Again, make sure to clearly indicate, for each step of the algorithm, what actions are taken by the algorithm.

Exercise 3 (20 pts)

Determine a maximum matching in the following graph, and give a short proof that your answer is correct.

Exercise 4 (30 pts).
Let G be a cycle.
a) Show that

$$
\chi(G)= \begin{cases}2 & \text { if } v(G) \text { is even } \\ 3 & \text { if } v(G) \text { is odd }\end{cases}
$$

b) Show that $\chi_{\ell}(G)=\chi(G)$.

